de 20 MasterClass

AGUASRESIDUALES.INFO

AGUASRESIDUALES INFO

Enrico Remigi

WEST Product Owner (DHI, Water in Cities) Environmental Engineer

- Model Development
- Technical Support & Training
- Projects (30): process & energy optimization

Case studies

Offline Studies - WEST

Online Solutions

About DHI

- Independent, private and not-for-profit organisation
- Main office in DK and 30+ offices in countries worldwide with total staff of more than 1,100
- Software products for water modelling the MIKE suite
- Custom-made digital solutions for the water sector

We support the UN sustainable development goals.

DHI is a **leading, innovative, global advisory** company, integrating deep **domain knowledge** and **technology** to enabling new ways to use, manage and live with **wate**r and to protect waterrelated ecosystems.

Wastewater Treatment Services

 $|\mathcal{N}|$

>>>> >>>>

- Experts in analysing, modelling and optimising WWTPs
 - performance and energy audits » Feasibility Studies
 - bottleneck identification & optimization » Advanced Process Modelling
- We can help to:
 - Improve effluent quality
 - └── Increase plant capacity
 - Become energy neutral
 - Recover valuable resources » WRRFs
 - \square Establish automated model- and data-driven operations

Wastewater Treatment Services

Operation (online)

Operation

(offline)

- Implementation of real-time DSS for operators and process engineers
 - » to identify best operating strategy in dynamic conditions
- Optimization of operation **costs** (e.g. aeration, chem dosing, energy)
- Assessment and optimization of advanced control solutions
- Estimation of GHG emissions (e.g. N2O)
- Operator training
- Design
- Evaluation of design alternatives and design verification
 - Capacity assessment for different scenarios (e.g. peak load, population growth, new discharge, ..)
 - Study **upgrade** solutions

Case studies

Offline Studies - WEST

Online Solutions

VIBY (DK)

CHALLENGE

- Insufficient capacity » unstable performance
- Short WWTP lifetime

SOLUTION

- Model-based process optimization & retrofitting
- Advanced control strategies (aeration, chemical dosing)

RESULT

- 30% capacity for < 2M Eur
- very limited interventions in new infrastructure

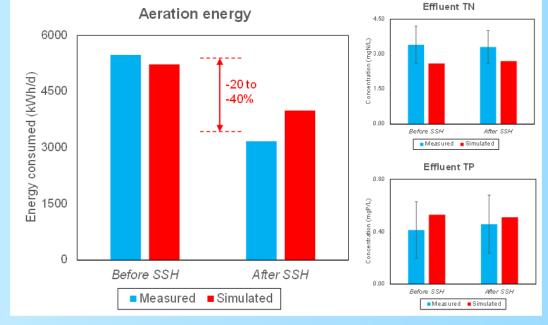
<u>Client</u>: Aarhus Vand <u>Partners</u>: NIRAS, TechRas Miljø, EssDe GmbH

BJERGMARKEN (DK)

CHALLENGE

High energy consumption due to excessive aeration

SOLUTION


- Model-based process retrofitting
- Conversion of ARP process to side-stream hydrolysis (SSH)

RESULT

- -20% reduction in aeration energy use
- Long-term treatment stability

<u>Client</u>: FORS A/S

WEST LAFAYETTE (US)

CHALLENGE

• Reduce C-footprint to fulfil climate action plan

SOLUTION

- Process modelling to identify optimization potential
- Advanced control strategies (aeration, anaerobic digestion)
- Carbon footprint calculator

RESULT

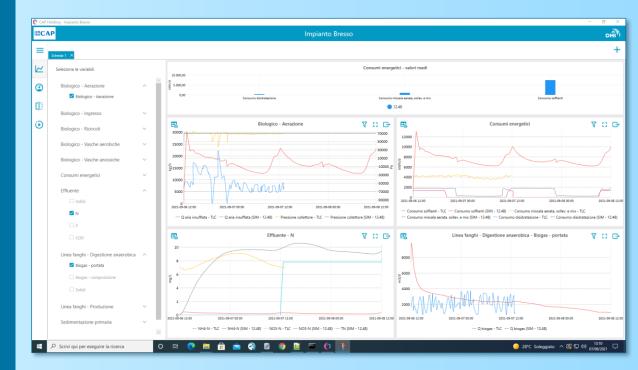
- 60% energy neutral operation achievable
- \$293,000 estimated yearly savings

Client: City of West Lafayette

BRESSO NIGUARDA (IT)

VISION

• Couple operator's experience, real-time data and model's predictive capability


SOLUTION

- Digital Twin for plant monitoring, staff training and decision support
- Custom GUI, automatic data acquisition, WEST model, and scheduled execution of simulations

RESULT

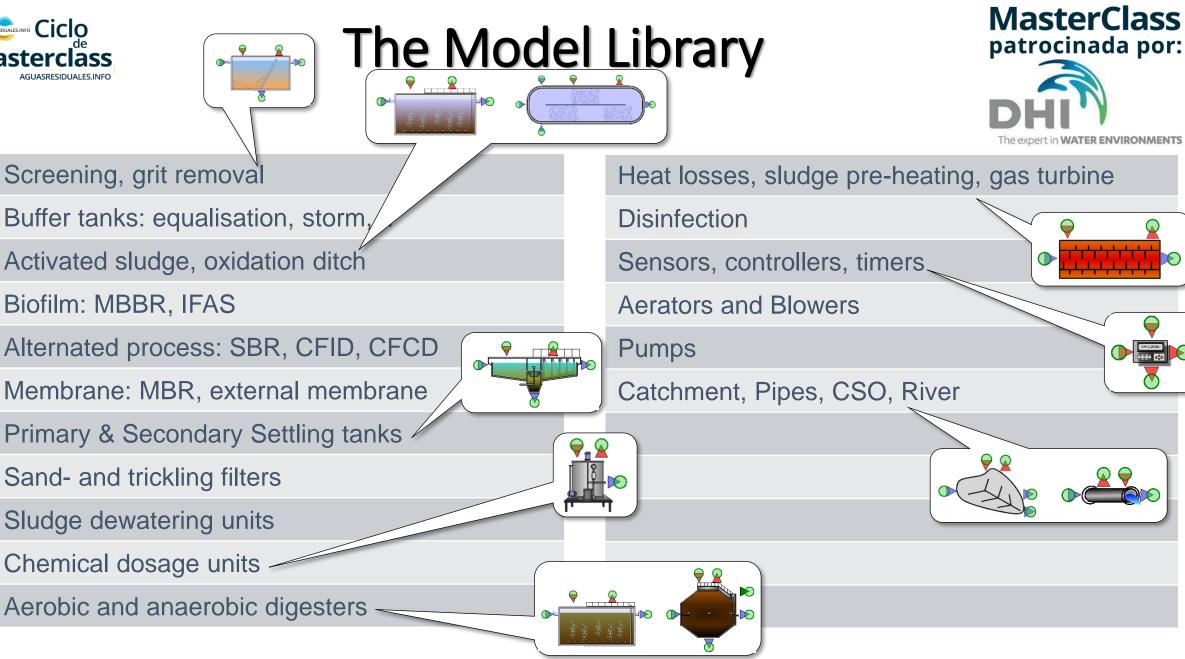
• Running on premises

Client: Gruppo CAP

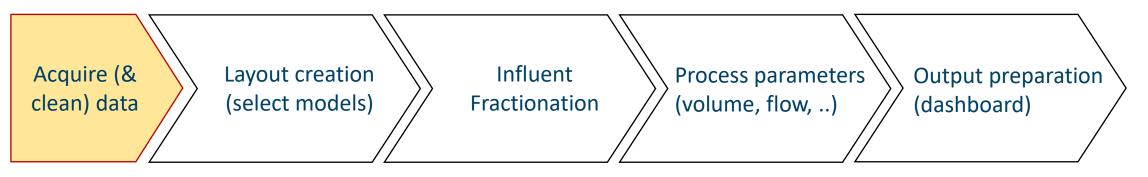
Case studies

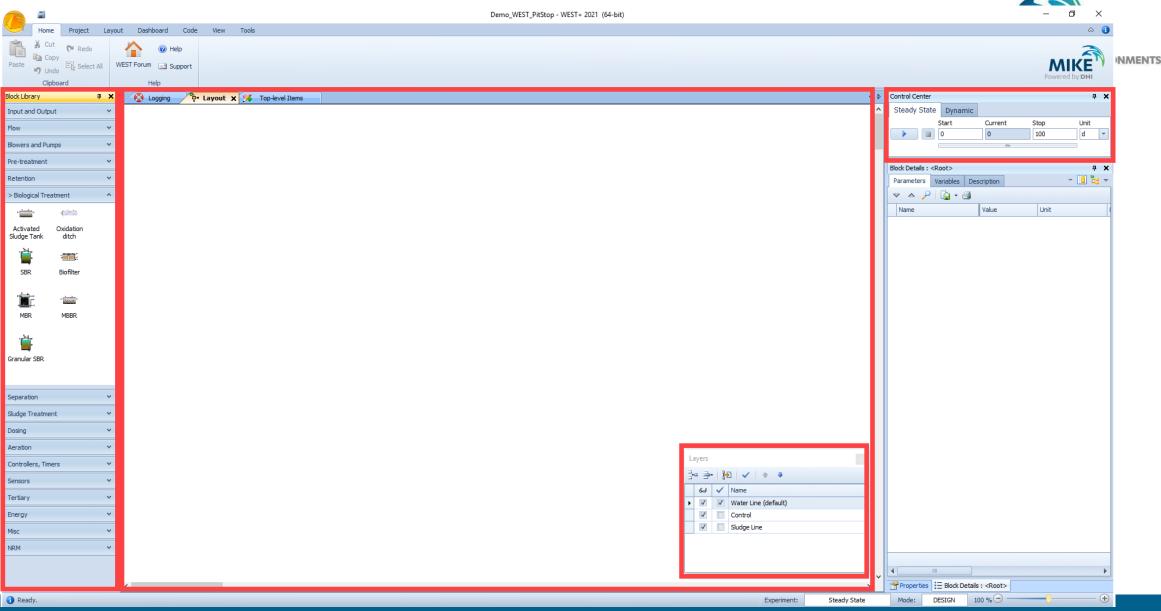
Offline Studies - WEST

Online Solutions



- Dynamic simulator for physical, chemical and biological processes
- Domains:
 - Municipal wastewater treatment plants (WWTP)
 - Transition WWTP » WRRF (Water Resource Recovery Facility)
 - Integrated Urban Water System (IUWS): catchment, sewer, plant, receiving water body
 - Other domains, e.g. (drinking) water treatment, industrial process water treatment, ..





AGUASRESIDUALES.INFO

Masterclass

o x Demo_WEST_PitStop - WEST+ 2021 (64-bit) ۵ 🚯 Project Lavout Dashboard Code View Tools Home ab Textbox Rulers 🞿 Display Names Group Send to Back °0 ان Select Rectangle / Line C Soline ijt. Top **₩**→₩ 📮 Left X Remove 2 Polyline Ellipse A Horizontal L Straight Line ab Edit Label ĽΡ Ъ. 🍓 Pan Rounded Rectangle S Polyline Animation UnGroup Bring Forward U 90° U 270° • Middle 😩 Center 1. Bezier Grid lines **DNMENTS** Pan to Block Remove Special S Orthogonal Horizontal Vertical 💋 Replace Icon Closed Curve d Vertical Align to Grid A Polygon Terminals 📑 Right 🔿 Curve 📝 Pencil Image Snap to Grid Opup Hints Bring to Front 🔤 Send Backward 🚺 180° Terminals III Bottom General Connections Show / Hide Arrange Rotate Flip Align Miscellaneous Annotation ↓ ♦ Control Center Block Library ч× - Layout * 🗙 🐝 Top-level Items 🛛 🚟 Influent - Municipality_1 **μ** Χ 🙆 Logging Steady State Dynamic > Input and Output ~ Start Current Stop Unit 14 d 👻 Image: Contract of the second seco 0 100 Municipal Influent wastewater Block Details **Ψ** × ▶ <mark>O</mark> - 📘 🍖 👻 Parameters Variables Description VectorOutput VectorInput 👻 il 🔑 🖓 🖓 Value Name Unit ▶<mark>0</mark> Input Output ASU 1 ASU 2 SST_1 ⊳Ğ⊳ Generator Flow Blowers and Pumps Pre-treatment Retention **Biological Treatment** Separation Sludge Treatment Dosing Aeration Layers Controllers, Timers 3= 🗲 🎦 🗸 🔺 🔹 Sensors 🞜 🗸 Name Tertiary Water Line (default) Energy Control Sludge Line Misc NRM 1111 Properties \Xi Block Details + 🚯 Ready. Experiment: Steady State Mode: DESIGN 100 % 😑

o x Demo_WEST_PitStop - WEST+ 2021 (64-bit) ۵ 🚯 Home Project Lavout Dashboard Code View Tools Select Rectangle ab Textbox Group Send to Back 00 / Line Spline Rulers 📫 Display Names Top iu+iu – 📮 Left X Remove 2 Polyline Ellipse A Horizontal 1_ Straight Line ab Edit Label ψĽ <u>1</u> 🛎 Center Rounded Rectangle S Polyline Grid lines 📑 Animation UnGroup Bring Forward U 90° U 270° • Middle rean 🕘 1. Bezier 8 RichTev ONMENTS Pan to Block Remove Special Horizontal Vertical 💋 Replace Icon 🔓 Orthogonal Closed Curve d Vertical Align to Grid A Polygon 🔿 Curve 📝 Pencil 🔜 Image R Snap to Grid Popup Hints Bring to Front 🖣 Send Backward 🚺 180° Terminals III Bottom Terminals 🗒 Right General Connections Show / Hide Arrange Rotate Flip Alian Miscellaneous Annotation Block Library **φ Χ** 🙆 Logging 🛛 🐎 Layout * 🗙 😽 Top-level Items 🛛 🚟 Influent - Municipality_1 ↓ ▷ Control Center **μ** Χ > Input and Output Steady State Dynamic ~ Start Current Stop Unit **1** . 2<u>6</u> d 👻 Image: Contract of the second seco 0 100 Municipal Influent wastewater Block Details : <Root> **4 X** ▶<mark>0</mark> - 📘 🏣 👻 Parameters Variables Description VectorInput VectorOutput 👻 il 🔑 🖓 🖓 Name Value Unit ▶<mark>0</mark> FS_1 Well 1 Input Output SST_1 ASU 1 ASU 2 FS_2 ⊳Ğ⊳ Generator Flow Blowers and Pumps Pre-treatment Retention **Biological Treatment** Separation Sludge Treatment Dosing Aeration Layers Controllers, Timers 📴 🚍 🎦 🗸 🔺 🔹 Sensors 6J 🗸 Name Tertiary Water Line (default) Energy Control Sludge Line Misc Properties 🗄 Block Details : <Root> > 🚯 Ready. Experiment: Steady State Mode: DESIGN 100 % 😑

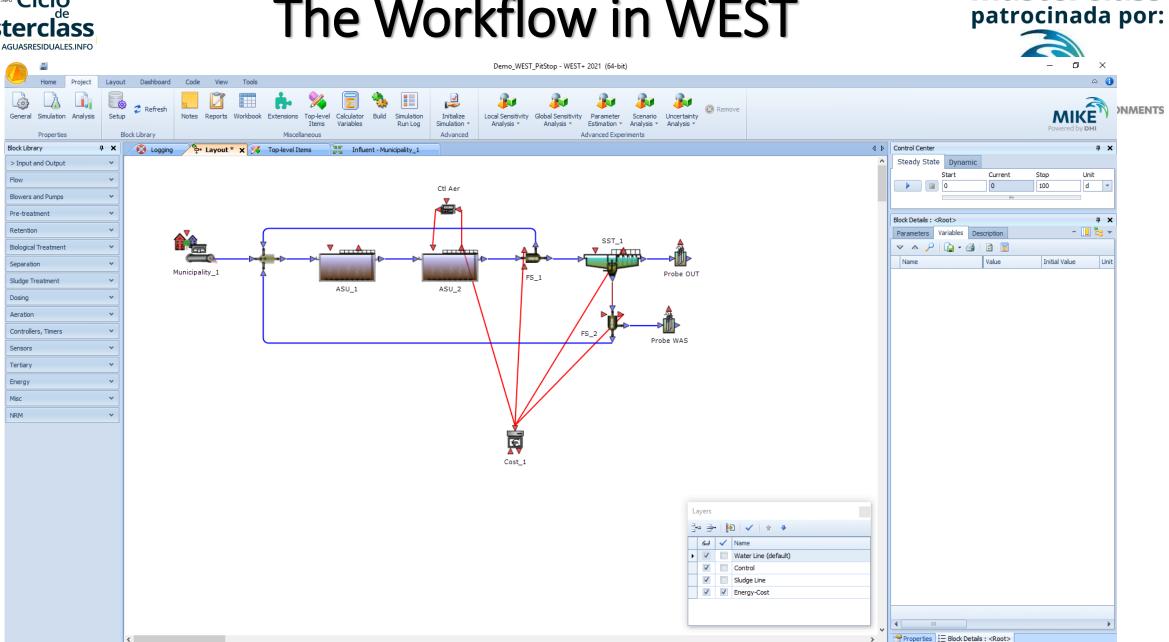
٥ × Demo WEST PitStop - WEST+ 2021 (64-bit) Code View ۵ 🕤 Home Project Layout Dashboard Tools Select Rectangle / Line ○ Spline ab Textbox Rulers 📫 Display Names Group Send to Back 0 00 Int Top iu⇒iu -📮 Left <u>₩</u>_₩. Ellipse X Remove 2 Polyline A Horizontal L Straight Line ab Edit Label UnGroup Å Center **NMENTS** I Pan Rounded Rectangle S Polyline Grid lines Animation Bring Forward U 90° U 270° •**⊪** Middle Pan to Block Remove Special Vertical S Orthogonal Horizontal 💋 Replace Icon Closed Curve d Vertical Align to Grid A Polygon H Snap to Grid Popup Hints 🖫 Bring to Front 🛛 🖣 Send Backward U 180° 🔿 Curve 🛛 🧪 Pencil 📮 Right 🔜 Image Terminals III Bottom Terminals Show / Hide General Connections Annotation Arrange Rotate Flip Alian Miscellaneous Block Library ч× 🗘 Layout * 🗙 🔀 Top-level Items Influent - Municipality_1 ↓ ♦ Control Center **Ψ** × 🔇 Logging Steady State Dynamic > Input and Output ~ Stop Start Current Unit 10 0 0 100 d 👻 Municipal Influent wastewater Block Details : <Root> ąх ▶<mark>0</mark> 0 - 📙 🧞 👻 Parameters Variables Description VectorInput VectorOutput SST_1 ▼ 👻 🔺 🔑 🗋 📲 🎒 Value Unit Name ▶<mark>0</mark> FS 1 Input Output ASU_1 ASU_2 ⊧Ğ Generator FS_2 Flow Blowers and Pumps Pre-treatment Retention **Biological Treatment** Separation Sludge Treatment Dosing Aeration Layers Controllers, Timers 3= 🚽 🎦 🗸 🔺 🔻 Sensors 6J 🗸 Name Tertiary Water Line (default) Control Energy Sludge Line Misc NRM Properties 🗄 Block Details : <Root> 🕤 Ready. Mode: DESIGN 100 % Experiment: Steady State

٥ Demo WEST PitStop - WEST+ 2021 (64-bit) × ۵ 🕤 Home Project Layout Dashboard Code View Tools Group Select Rectangle / Line Spline ab Textbox Rulers 📫 Display Names Send to Back 0 00 Int Top iu⇒iu 📮 Left X Remove 2 Polyline Ellinse A Horizontal L Straight Line ab Edit Label <u>نانا</u> Animation UnGroup 🛎 Center **NMENTS** I Pan Rounded Rectangle S Polyline a RichText Grid lines Bring Forward U 90° U 270° •I• Middle Bezier Pan to Block 🕅 Remove Special Vertical S Orthogonal Horizontal 💋 Replace Icon Closed Curve Vertical Align to Grid H Snap to Grid Popup Hints 🖫 Bring to Front 🛛 📮 Send Backward A Polygon 🔿 Curve 📝 Pencil U 180° 🗒 Right 🔜 Image Terminals III Bottom Terminals Show / Hide General Connections Annotation Arrange Rotate Flip Align Miscellaneous Block Library **μ** Χ Influent - Municipality_1 ↓ ♦ Control Center **μ** Χ 💁 Layout * 🗙 🥳 Top-level Items 🔘 Logging Steady State Dynamic Input and Output ~ Stop Start Current Unit Flow × 0 0 100 d 👻 Blowers and Pumps Pre-treatment Properties **μ** Χ Retention Canvas ~ SST_1 Background Color White ▼ **Biological Treatment** > Grid Syncfusion.Windows.Forms.Diagra... Height 2000 Separation Municipality_1 Smoothing Mode HighQuality Probe OUT FS 1 Sludge Treatment Width 2000 ASU_1 ASU_2 General Dosing Description IconName Aeration Imports Generic.Quantities.* Controllers, Timers FS_2 IsDefault False Probe WAS IsLoopBreaker False > Sensors IsPartial False Labels Verdana, 8pt > Font Multiprobe Process Visible True sensor calculator Lines ė CurveRadius 8 EnableRoundedCorner True Signal Cost LineBridgeSize 8 Treatment LineBridging False LineRouting False LoopBreakers Sampler EnableControlConnections True InsertLoopBreakers True LoopBreaker MainDiff Tertiary Layers Energy 루프 🌫 🎦 🗸 🔺 🔹 Misc 6J 🗸 Name NDM Water Line (default) Control Sludge Line Properties 📰 Block Details : <Root>

Mode: DESIGN 100 % 😑

Ŧ

🚯 Ready.


đ X Demo WEST PitStop - WEST+ 2021 (64-bit) ۵ 🕤 Home Project Layout Dashboard Code View Tools Select Rectangle / Line Spline ab Textbox Rulers 📫 Display Names Group Send to Back **U** 0° Top 📮 Left <u>1</u> **₩**→₩ × Remove 2 Polyline Ellipse A Horizontal L Straight Line ab Edit Label Ъ. .**≟**∕ Animation UnGroup Å Center NMENTS I Pan Rounded Rectangle Selvine Polyline Bezier ab RichText Grid lines Bring Forward U 90° U 270° •∂ Middle Pan to Block Remove Special Vertical S Orthogonal Horizontal Closed Curve d Vertical Align to Grid 💋 Replace Icon Han Snap to Grid Popup Hints 🖫 Bring to Front 🛛 📲 Send Backward ∧ Polygon Curve U 180° 📮 Right nencil 🔜 Image Terminals Terminals Show / Hide General Connections Annotations Arrange Rotate Flip Align Miscellaneous Block Library ĄХ Influent - Municipality_1 4 ▷ Control Center **μ** Χ - Layout * 🗙 🌿 Top-level Items 🔇 Logging Steady State Dynamic Input and Output ~ Start Current Stop Unit Flow \sim 0 0 100 d 👻 Ctl Aer Blowers and Pumps × Pre-treatment Properties **Ψ** × Retention Canvas SST_1 Background Color White ▼ **Biological Treatment** > Grid Syncfusion.Windows.Forms.Diagra... 2000 Height Separation Municipality 1 Smoothing Mode HighQuality Probe OUT FS_1 Sludge Treatment 2000 Width ASU 1 ASU_2 General Dosing Description IconName Aeration Generic.Ouantities.* Imports > Controllers, Timers FS_2 IsDefault False Probe WAS IsLoopBreaker False -IsPartial False PI Controller Timer Labels > Font Verdana, 8pt Visible True ۰. L. Lines Ratio On Off CurveRadius 8 Controller Controller True EnableRoundedCorner LineBridgeSize 8 ×. LineBridging False P Controller PID Controller LineRouting False LoopBreakers EnableControlConnections True **4**00 **−** InsertLoopBreakers True OSCAR LoopBreaker MainDiff Layers 📴 🔿 🎦 🗸 🔺 Sensors 64 🗸 Name Tertiary Water Line (default) Control Energy ~ Sludge Line NRM Properties = Block Details : < Root> >

Mode: DESIGN

100 % 😑

(+)

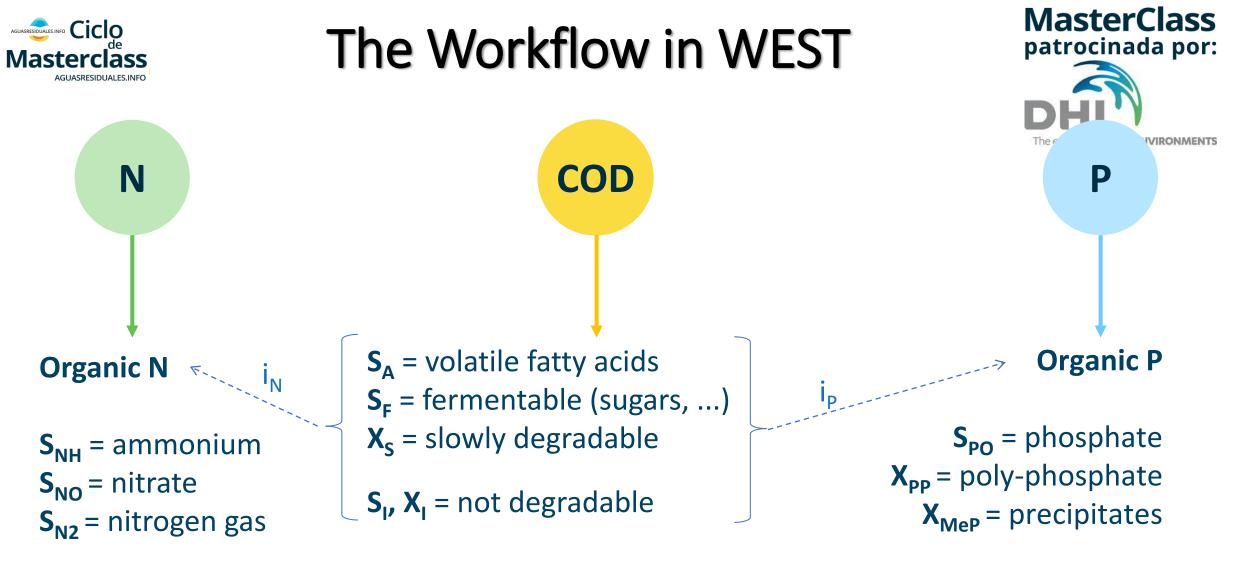
Masterclass

Steady State Experiment:

DESIGN 100 %

Mode:

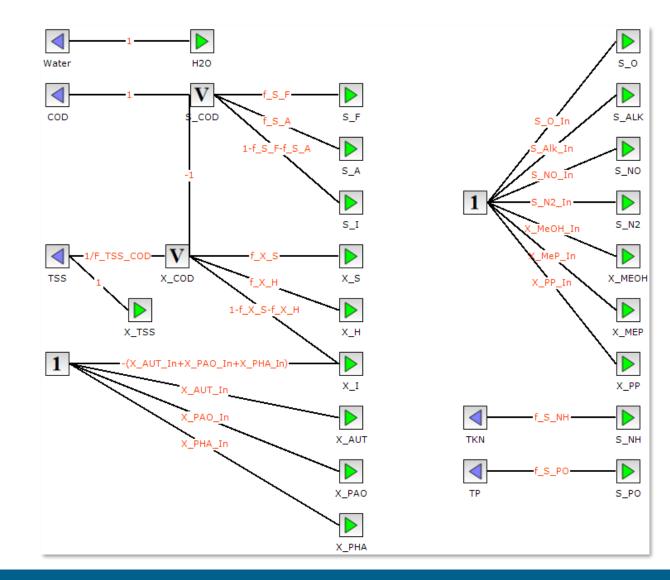
MasterClass


 \times ٥ Demo_WEST_PitStop - WEST+ 2021 (64-bit) ۵ 🚯 Project Lavout Dashboard Code View Tools Home Select ab Textbox Rulers 🛋 Display Names Group Send to Back 00 00 Rectangle / Line ○ Spline Top lių⇒liµ – 📴 Left X Remove 2 Polyline Ellipse A Horizontal "L Straight Line ab Edit Label <u>14</u> Selvine Grid lines Animation UnGroup ĿΨ • Middle Å Center rean 🕘 Rounded Rectangle 1 Bezier ab RichText Bring Forward U 90° U 270° **NMENTS** Pan to Block Remove Special Closed Curve Horizontal Vertical 💋 Replace Icon S Orthogonal Vertical Align to Grid A Polygon 🔿 Curve 📝 Pencil 🔜 Image Hin Snap to Grid Popup Hints 🖫 Bring to Front 🛛 🖷 Send Backward U 180° Terminals Terminals 📮 Right Connections Show / Hide Arrange Rotate Flip Align Miscellaneous Genera Annotation 🔞 Logging 🔑 Layout * 🗙 🌿 Top-level Items 📲 Influent - Municipality_1 ↓ ▷ Control Center **₽**× Steady State Dynamic Start Current Stop Unit d 👻 0 100 0 Ctl Aer i 🗐 🗸 Properties ĄХ Canvas 1 PST_1 SST_1 Background Color White $\mathbf{\nabla}$ · · · · · • > Grid Syncfusion, Windows, Forms, Diagra... 2000 Height Municipality_1 Probe OUT HighQuality Smoothing Mode FS_1 Width 2000 ASU_1 ASU_2 General ė. Description Thickener IconName Imports Generic.Quantities.* Probe PST FS_2 IsDefault False Probe WAS False IsLoopBreaker IsPartial False Labels > Font Verdana, 8pt Probe WA: Thick Visible True Lines CurveRadius 8 EnableRoundedCorner True LineBridgeSize 8 Dewatering LineBridging False LineRouting False LoopBreakers EnableControlConnections True Anaer digester InsertLoopBreakers True LoopBreaker MainDiff asteSludge Layers 🕂 🔿 🎦 🗸 🔹 🗣 6J 🗸 Name Water Line (default) Control • Sludge Line Energy-Cost

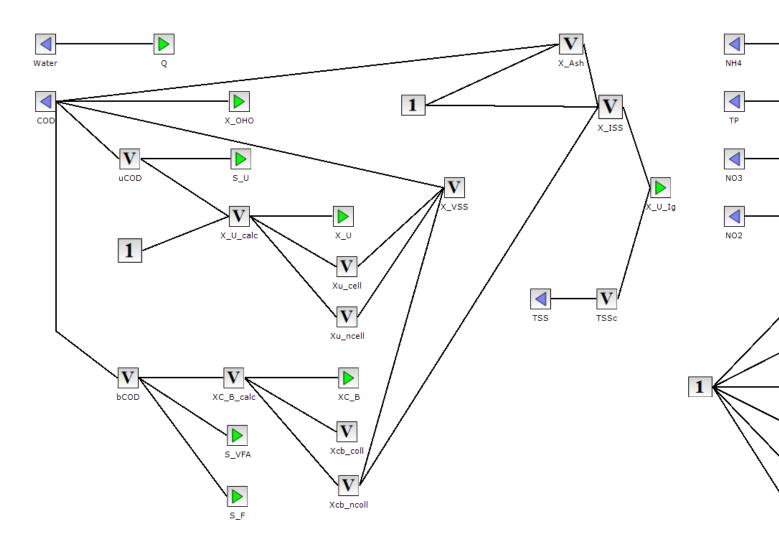
.

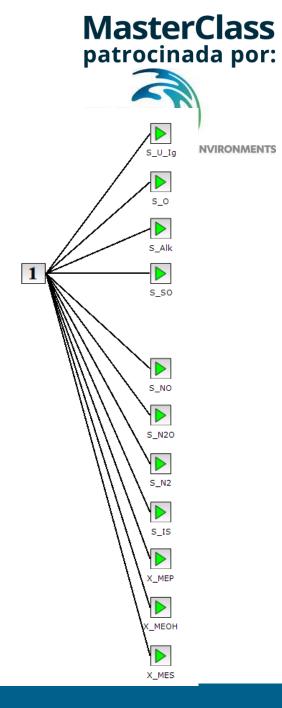
Properties 📰 Block Details : <Root>

Mode: DESIGN 100 %



X_H, X_{AUT}, X_{PAO} = micro-organisms


Influent Fractionation


f_S_F	0.375
f_S_A	0.25
f_X_S	0.69
f_X_H	0.17
f_S_NH	0.6
f_S_PO	0.6
F_TSS_COD	0.75

Masterclass

AGUASRESIDUALES.INFO

S_NHx

S_PO

S_NO3

S_NO2

X_AOB

X NOB

X_ANA

X_PAO

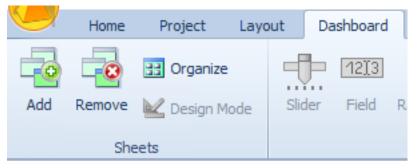
X_PAO_Stor

X_PAO_PP

Process Parameters

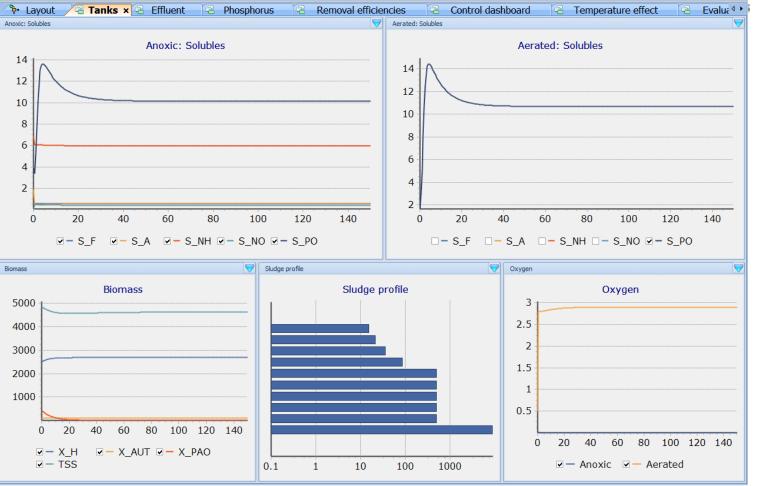
Blocco	Blocco	From	То	
Ctl kLa	Aerata	DO	y_M	
CUKLA	Aerata	u	kLa	
	Anossica	V_ASU	V_01	
	Anossica	TSS	TSS_01	
Eta del fango	Aerata	V_ASU	V_01	
	Aerata	TSS	TSS_01	
	S-Effluente	y_Q	Q_Out	
	5-Lindente	y_TSS	TSS_Out	
	S-Fango Supero	y_Q	Q_Waste1	
	5-rango Supero	y_TSS	TSS_Waste1	
Cost_1	Aerata	AerationPower	AerationPower1	
	R-ML	PumpingPower	PumpingPower1	
	Sed Secondario	PumpingPower	PumpingPower2	

Influente	f_S_A = 0.25 f_S_F = 0.375 F_TSS_COD = 0.75
Anossica	Temp = 20 ºC kLa = 1 1/d Vol = 5,000 m3
Aerato	Temp = 20 ºC kLa = controllata Vol = 10,000 m3
Controllore PI	y_S = 2 (g/m3)
Ricircolo ML	Q_Out2 = 77,000 m3/d
Ricircolo RAS	Q_Under = 22,000 m3/d
Fango di supero	Q_Out2 = 385 m3/d



Dashboards for plots, tables, ..

MasterClass patrocinada por:



1. Add a Sheet

2. Add plot, table, field, ..

Stats and Objective Functions

Home Project Simulation Analysis General Properties

Analysis Properties

Submodel

Calc_SRT

Cost_1

Cost_1 ProbeOut

ProbeOut

ProbeOut

ProbeOut

ProbeOut

ProbeOut

Variables

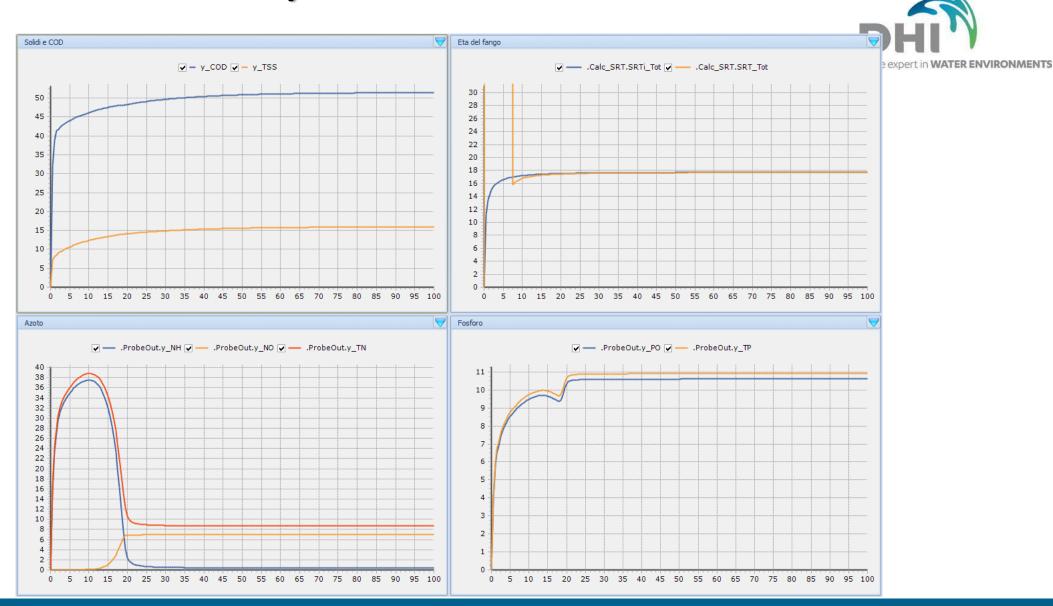
Objective Function Run Variables Data files Gen<u>eral</u>

*** independent for steady-state and dynamic simulations

eral				_							
Name		Gener	al Time series Criteria								
SRT_Tot		Nam	e		Enabled	Desired Value	Lower bound	Upper bound	Weight	Value	
TotalAerationPower		~ /	Aggregation								<u> </u>
TotalPumpingPower	. •	·	Minimum			0	-INF	+INF	1		
y_COD			Maximum			0	-INF	+INF	1		=
y_NH			Mean		1	0	-INF	+INF	1	0	
y_NO			Mean Weighted			0	-INF	+INF	1		
y_TN			Standard Deviation		V	0	-INF	+INF	1	0	
y_TP			Standard Deviation Weig	hted		0	-INF	+INF	1		
y_TSS			Median			0	-INF	+INF	1		
1	ᅬ		Lower Percentile		1	0	-INF	+INF	1	0	
1			Upper Percentile		V	0	-INF	+INF	1	0	
/			Lower Percentile 2			0	-INF	+INF	1		
			Upper Percentile 2			0	-INF	+INF	1		
			Skewness			0	-TNF	+INF	1		-
		Prope	rties								
s		Percer	ntage:	ې 1	10 2	. 30	40 , 50	, <mark>60</mark> ,	70 , 80	, 90	100
	L	Percer	ntage 2:	٩	10 2	0, 30,	40 50	, <mark>60</mark> ,	70 80	, 90 ,	100
	н	Sample	e:			Standard:		Order:			3 🗘
	1	Specif	y Number of Time points:	V		Number of Time poin	ts:	100 🗘			
	1	Time:		0							
	Lower bound:		-1.7976	-1.79769313486 Upper bound: 1.79769313486							
					AbsSquared						
				Com	Compute Root of Mean Difference: 🕢 Difference Interpolated: 📝 Difference Extrapolated: 📝						
	- 11		t Variable:				*				

Statistics Sub-objectives

in WATER ENVIRONMENTS


MasterClass

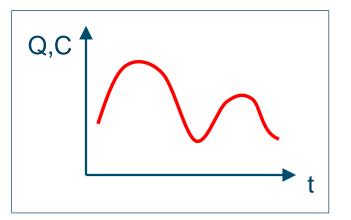
patrocinada por:

Criteria

Steady-state Simulation


MasterClass

patrocinada por:

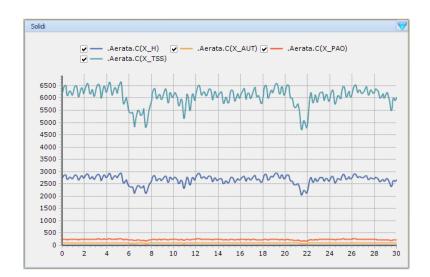

Steady-state \rightarrow Dynamic

- Steady-state simulation
 - » Initial conditions for the system
 - » Baseline calibration

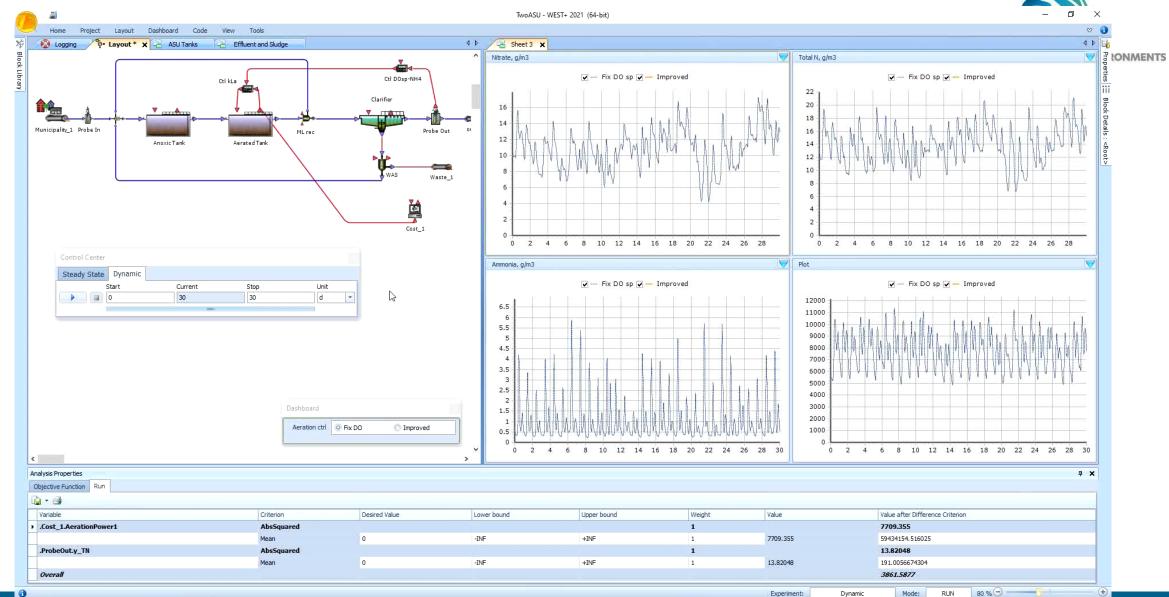
» Costant conditions (flow rate, concentrations) / long-term

Dynamic simulation

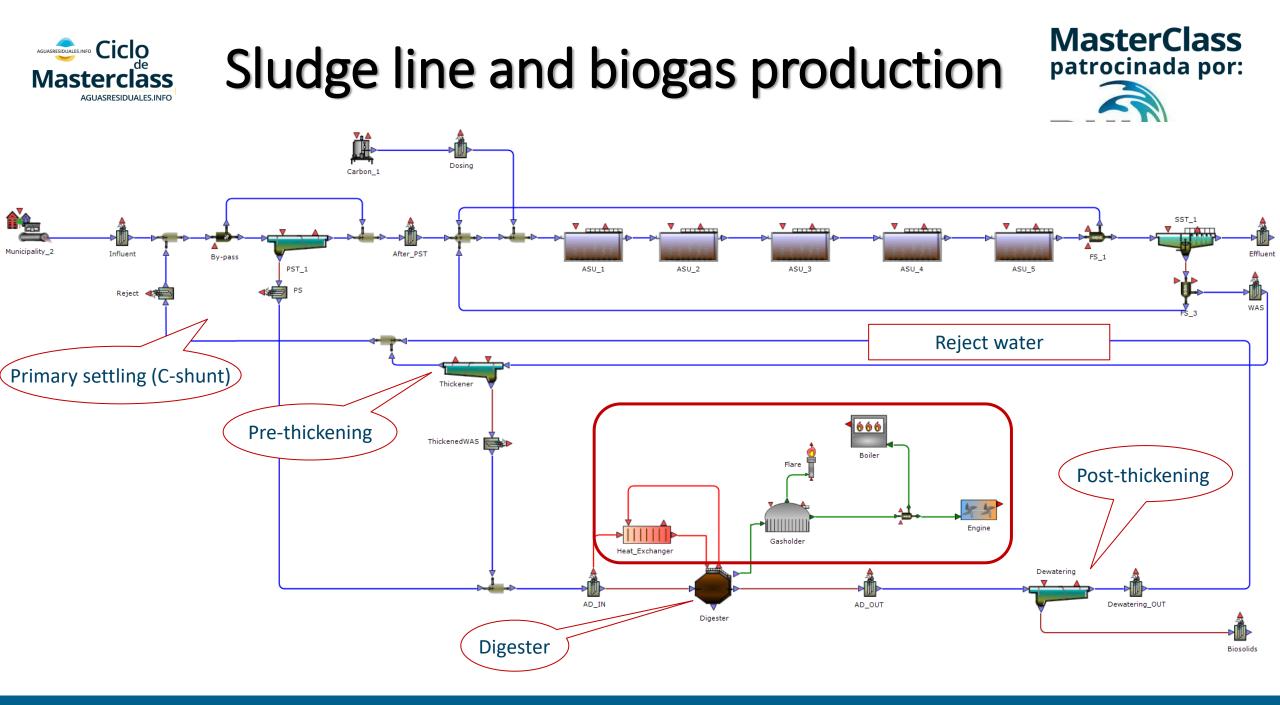

» Dynamic conditions (flow rate, concentrations) / relevant time window

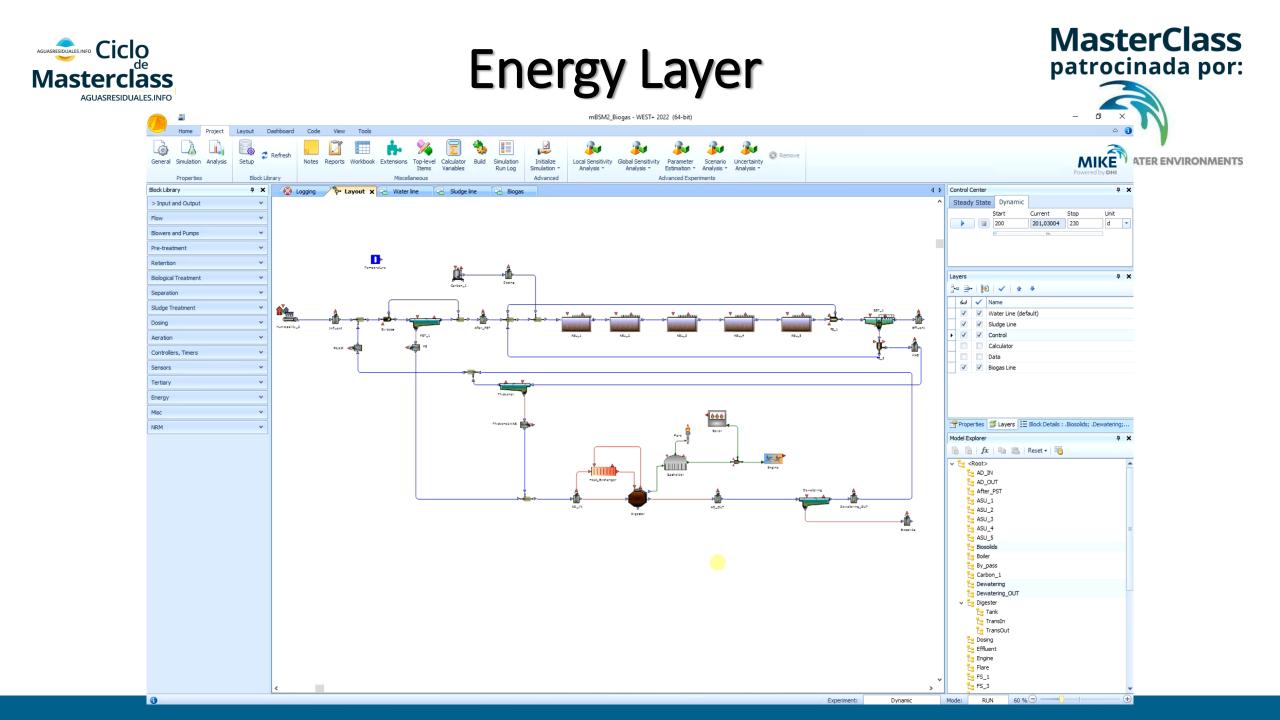


Dynamic Simulation



	COD	NH	NO	TN	TP	TSS	Aerat	Pumping	
Udine_01b-dyn	g/m3	g/m3	g/m3	g/m3	g/m3	g/m3	kWh/d	kWh/d	
Mean	38.79	0.53	6.57	8.02	8.64	13.40	6962	3960	10922
Standard Deviation	4.32	0.47	1.30	1.62	2.82	3.83			
Lower Percentile	30.95	0.17	4.17	5.14	4.76	8.71			
Upper Percentile	44.70	1.54	8.69	10.69	13.63	20.48			


Control & Automation


MasterClass patrocinada por:

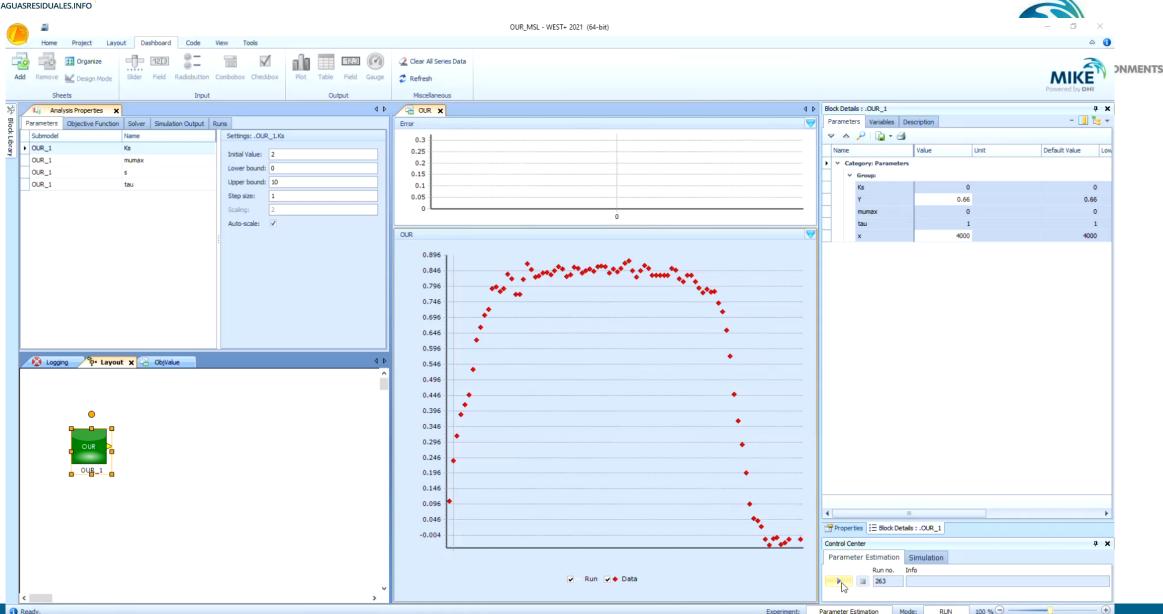
Masterclass

AGUASRESIDUALES.INFO

Types of Experiments in WEST

- Base Experiment = Objective Evaluation
 - Steady-state (SS) & Dynamic (DYN) simulations combined
 - Assessment of custom objective functions
- Advanced Experiments
 - To quantify the impact of change to a set of parameters, on a set of variables

Types of Experiments in WEST


MasterClass

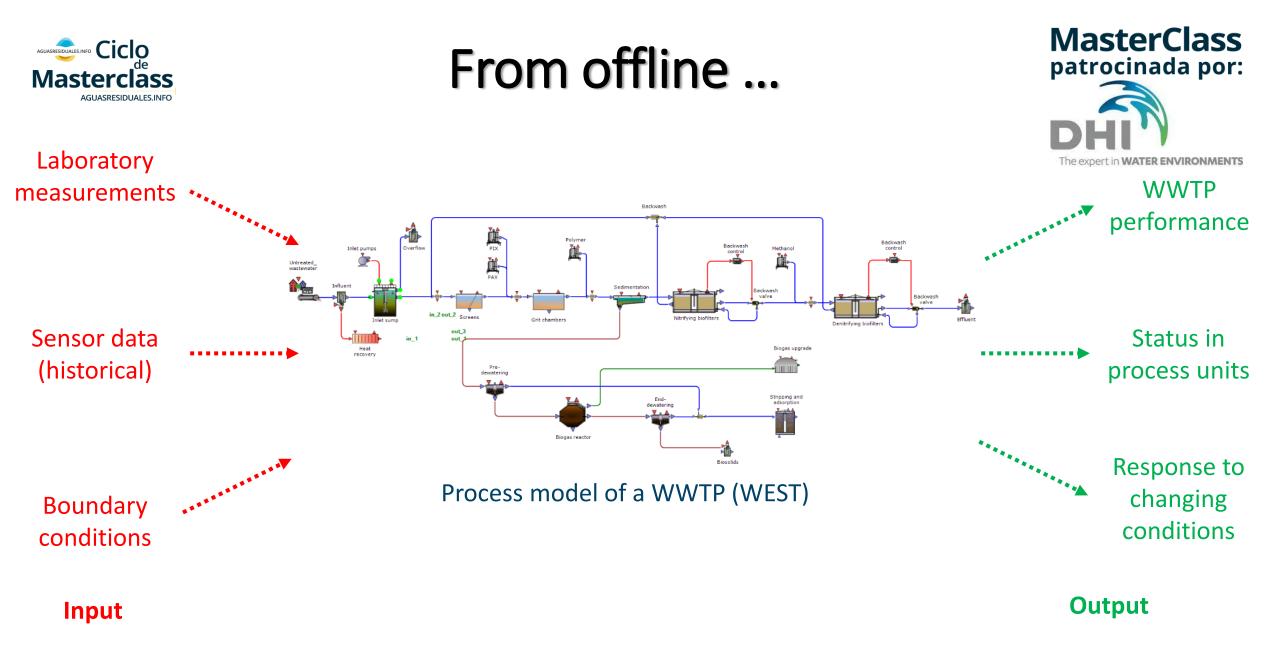
Local Sensitivity Analysis	Sensitivity of a set of variables on a set of parameters Analytical method				
Global Sensitivity Analysis	Sensitivity of a set of variables on a set of parameters Statistical method				
Parameter Estimation	 Minimise the objective function, by varying a set of parameters Goal: a) Compare measurements vs. model output » Calibration b) Combination of variables » Optimization 				
Scenario Analysis	Compare scenarios (variables) for different sets of parameters values				
Uncertainty Analysis Quantify how the uncertainty on the model parameters (input) pro- to the model variables (output)					

Automatic Model Calibration

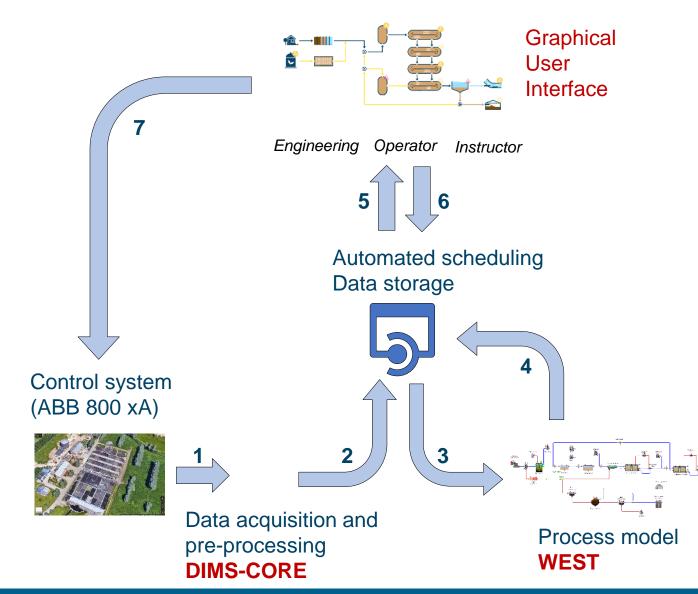
MasterClass

patrocinada por:

Masterclass


Case studies

Offline Studies - WEST

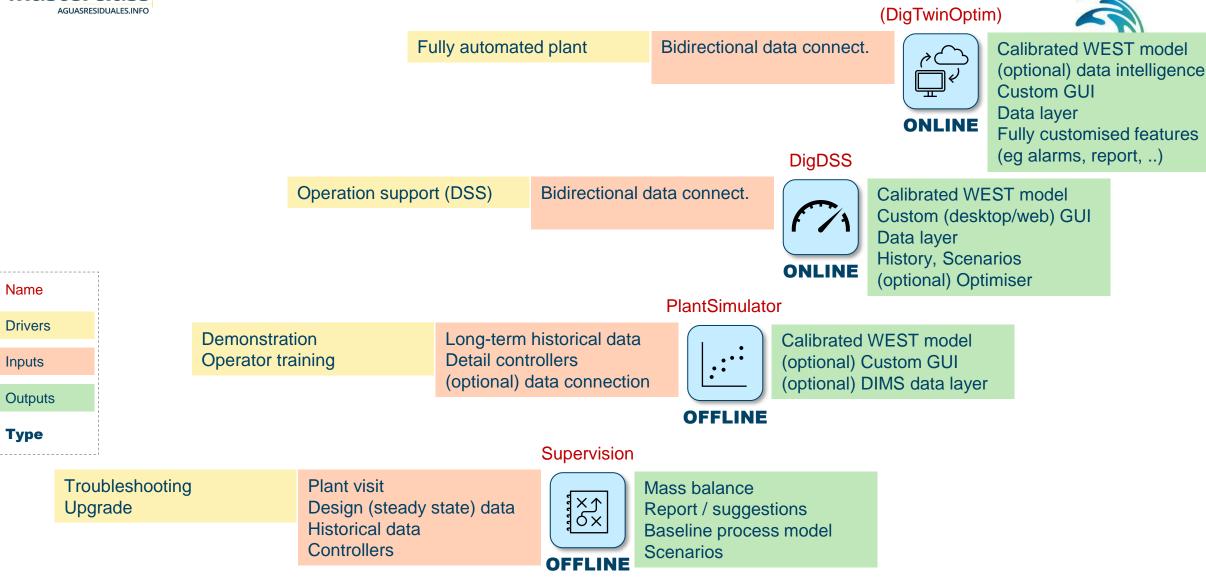


Online Solutions

... to online

- 1. Online data acquisition from data historian
- 2. Transfer of pre-processed online data to data storage
- 3. Data input to process simulator and execution of simulations
- 4. Transfer of simulation output to data storage
- 5. Consultation of simulation results and online data through GUI, data export and report generation
- 6. Set up and execution of what-if scenarios, induced equipment faults
- 7. Implementation of tested operational alternatives (manual / automated)

The Digital Twin idea



- A Digital Twin is a digital replica of a physical entity, with its properties and characteristics that can be used for multiple goals (IWA, 2021):
 - The virtual entity (model) operates simultaneously with the physical entity (plant) » Connectivity
 - The interface between physical and virtual world is possible through continuous exchange of data » Real time
 - Service: from offline to online (real-time & prediction)

MasterClass patrocinada por:

Conclusions

- When are process models used?
 - Different stages: project / upgrade / optimization / management
 - Offline vs. Online
- Worflow in WEST
 - Graphical setup of a process layout
 - Layout fractionation
 - Execution of the simulation: steady-state, dynamic and "advanced" experiments
- Model-based Solutions

Muchas gracias por su atención.

Ciclo de 20 MasterClass

AGUASRESIDUALES.INFO

AGUASRESIDUALES INFO