

AOP como nunca has visto. Nanotecnología TiO₂.

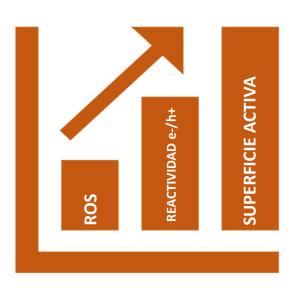
VANN WORLD **■**

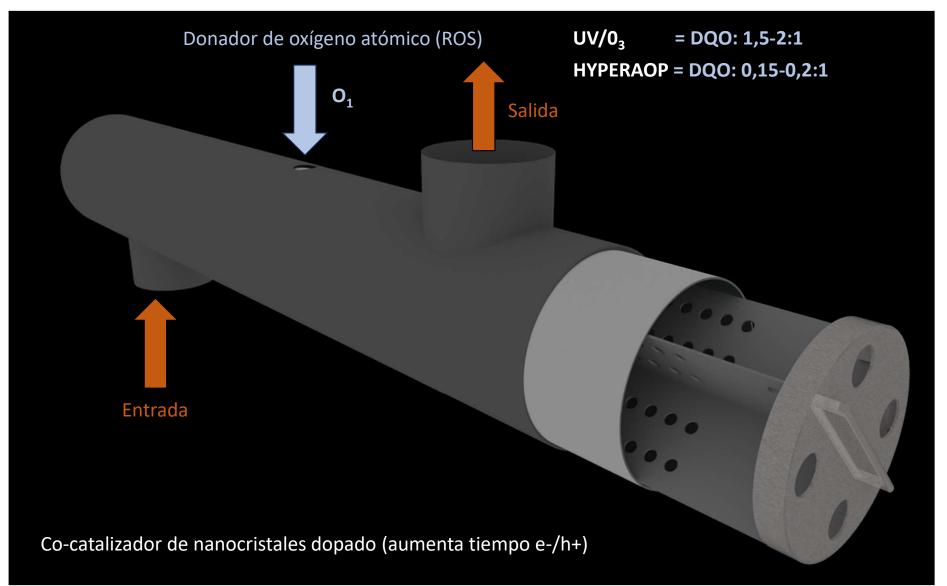
1997 2007 2015 2020 2025 ambientcare

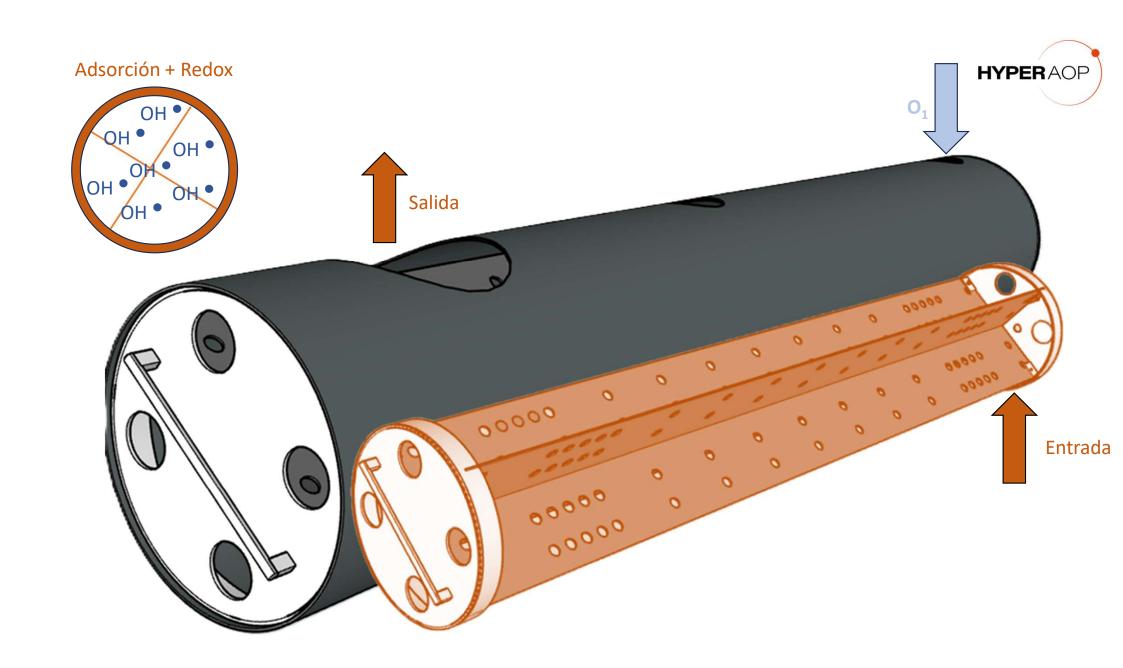
agua fuego aire h2o.<mark>TITANIUM</mark>[⊗] VANN WORLD **■ HYPER**AOP AOP[®] DMS[®] SOURCEDEVIE[®] **UPA[®]** H2O.AQUARIUM® OASIS[®] WATERWIZ

EL RAYO EN UNA BOTELLA

- 1. Número de ciclos (reactores AOP)
- 2. Generación OH• limitada a la superficie TiO₂







600% MÁS POTENTE EN COMPARACIÓN CON AOP REDUCCIÓN TIEMPO TRATAMIENTO ELIMINACIÓN DE COMPUESTOS ANTES "IMPENSABLES"

600% MÁS POTENTE

TECNOLOGÍA ¿COMPETENCIA DE HYPERAOP?

Electrooxidación	✓ Sí	Gran competidor en términos de mineralización total. Produce radicales hidroxilo sin necesidad de reactivos adicionales. Alto consumo energético.
Fotocatálisis con TiO ₂	✓ Sí	Eficiente en fármacos , pesticidas y colorantes , pero mucho más lenta que HYPERAOP e inviable a nivel industrial en gran número de casos.
Plasma Frío y Descargas de Corona	✓ Sí	Alto potencial, genera radicales reactivos y ozono, pero aún no está totalmente optimizado a escala industrial.
Ozonización avanzada (O ₃ + H ₂ O ₂ , UV)	✓ Sí	Similar a HYPERAOP pero con limitaciones en mineralización total. Puede formar subproductos tóxicos y necesita control continuo.
Proceso Fenton y Foto-Fenton	✓ Sí	Mineraliza bien fenoles, colorantes y pesticidas , pero requiere pH ácido y genera lodos férricos .
Biorreactores de Membrana (MBR)	× No	Aunque degrada materia orgánica, no mineraliza completamente contaminantes recalcitrantes.
Biorreactores Anaerobios (UASB, EGSB)	× No	Biodegrada algunos compuestos, pero no es eficaz para hidrocarburos ni fármacos entre otros.
Carbón Activado (GAC/PAC)	× No	No mineraliza , solo adsorbe. Puede usarse como pretratamiento antes de HYPERAOP *.
Zeolitas y Sílices Modificadas	× No	Adsorben pero no destruyen los contaminantes, por lo que no compiten en mineralización.
Electrocoagulación	× No	Puede eliminar fenoles y colorantes, pero no mineraliza completamente compuestos persistentes.
Ósmosis Inversa y Nanofiltración	× No	Separa los contaminantes pero no los destruye, generando un concentrado que necesita otro tratamiento.
Destilación por Membrana	× No	Remueve contaminantes por evaporación, pero no los mineraliza , por lo que no es un competidor directo.

TECNOLOGÍA	CAPEX		OPEX	
Electrooxidación	Requiere electrodos avanzados (BDD, Pt, MMO), reactores especializados, alto consumo de energía.		Elevado	Alto consumo energético, reemplazo de electrodos, manejo de cloruros en aguas salinas.
Plasma Frío y Descargas de Corona	Muy elevado	Tecnología emergente con infraestructura y consumo energético elevado.	Muy elevado	Consumo energético extremo y tecnología no optimizada a nivel industrial.
Ozonización avanzada (O₃ + H₂O₂, UV)	Flevado ozono v control		Elevado	Costo de generación de ozono y consumo de reactivos, pero sin residuos físicos.
Proceso Fenton y Foto-Fenton	Moderado	No requiere infraestructura avanzada, pero sí reactores específicos y sistemas de control de pH.	Elevado	Consumo continuo de reactivos (H ₂ O ₂ , Fe ²⁺), generación de lodos y costos de neutralización.
HYPERAOP	Elevado	Altamente eficiente. Poco espacio. Ligero. Sencillo. Fácil manejo y uso. Sin infraestructura.	Bajo	Consumo energético, mantenimiento y limpieza mínimo. Consumibles mínimos. Sin uso de químicos y/o reactivos

¿DÓNDE ESTAMOS?

PRUEBAS DE LABORATORIO

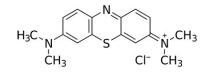

PILOTAJE CON AGUA SINTÉTICA

PILOTAJE CON AGUA INDUSTRIAL

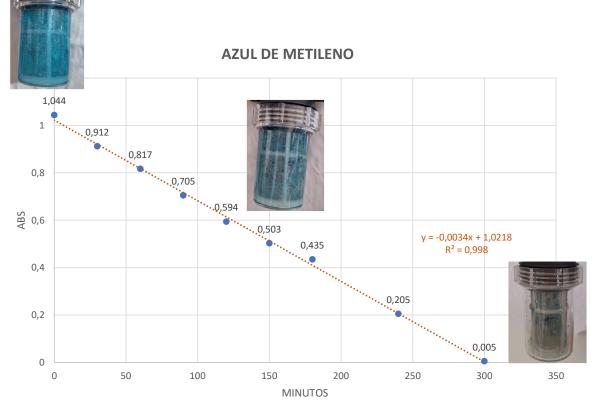
INSTALACIÓN REAL

PRESUPUESTO APROXIMADO

DEFINIR TIEMPO NECESARIO PILOTAJE ADECUACIÓN HIDRÁULICA Y ELÉCTRICA INFORME PERIÓDICO DE RESULTADOS

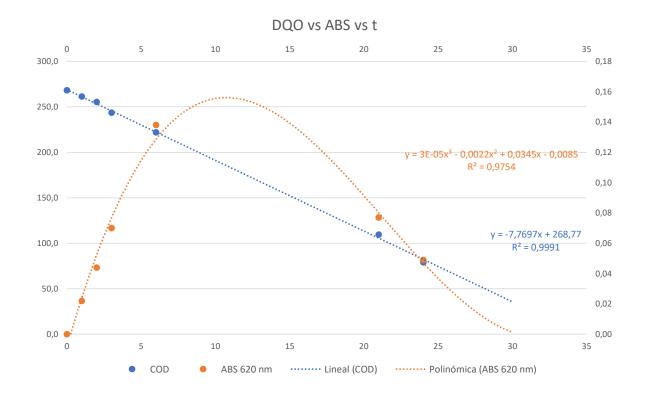

PILOTAJE IN SITU

SOLO ESPAÑA


PUESTA EN MARCHA DEL EQUIPO VISITAS DE SEGUIMIENTO PERIÓDICAS ANÁLISIS DE RESULTADOS

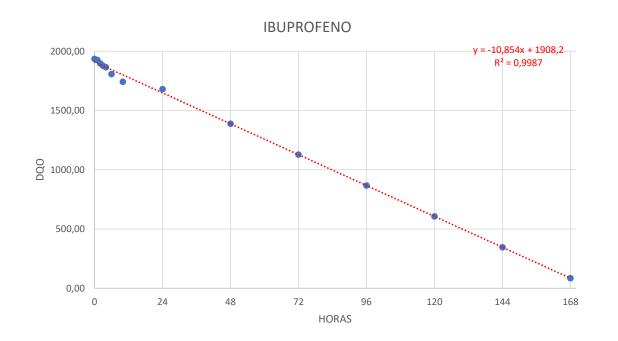
AZUL DE METILENO $C_{16}H_{18}CIN_3S$

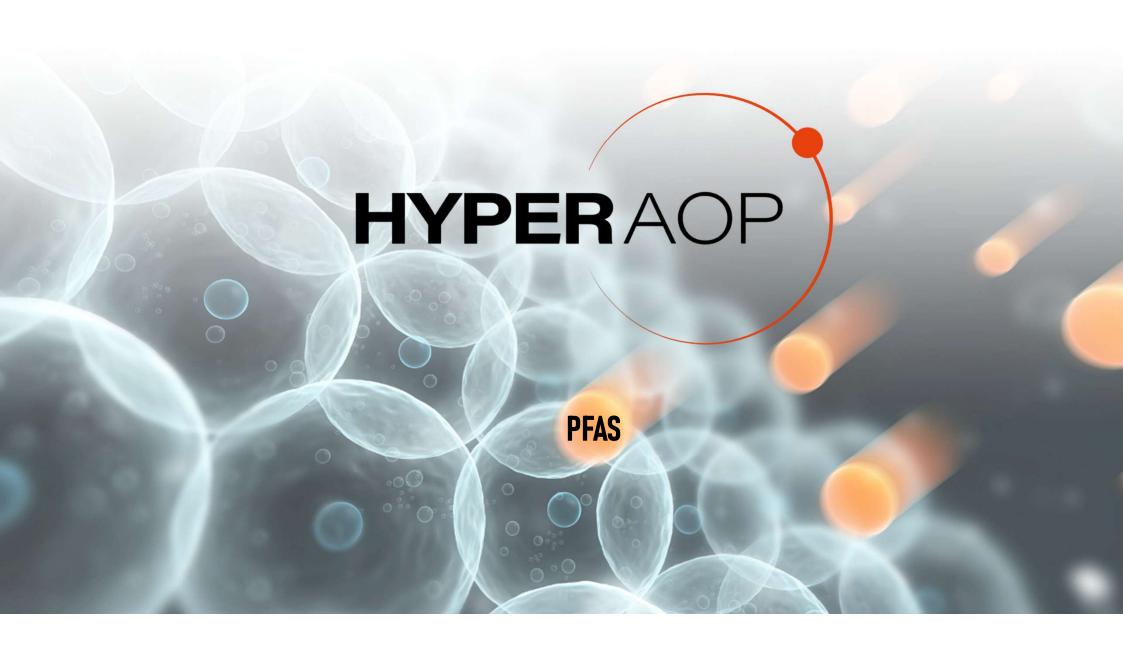
¿EN CUÁNTO TIEMPO LO QUIERES RESOLVER?



FENOL C₆H₆O

¿EN CUÁNTO TIEMPO LO QUIERES RESOLVER?





IBUPROFENO C₁₂H₁₈O₂

¿EN CUÁNTO TIEMPO LO QUIERES RESOLVER?

PFAS

CO-CATALIZADOR A BASE DE ÓXIDO DE INDIO IRRADIADO A 254 nm

LABORATORIO

y = -0.0293x + 1.28

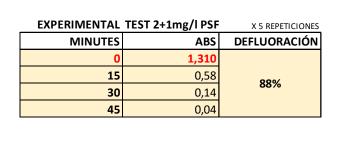
 $R^2 = 0.959$

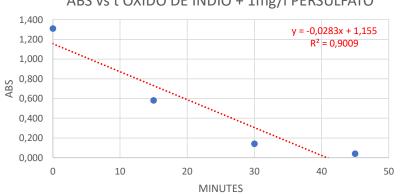
40

50

	EXPERIMENTAL	TEST 1	X 5 REPETICIONES
	MINUTES	ABS	DEFLUORACIÓN
	0	1,310	76%
	15	0,88	
	30	0,23	
ſ	45	0.06	

EXPERIMENTAL II	ESI 1	X 5 REPETICIONES
MINUTES	ABS	DEFLUORACIÓN
0	1,310	
15	0,88	/6%
30	0,23	
45	0,06	


1,400


1,200

1,000

0,400

O,600 PB 0,600

30

ABS vs t OXIDO DE INDIO

OPORTUNIDAD ÚNICA

SOLUCIONAR LOS PROBLEMAS DE PFAS CON LA TECNOLOGÍA HYPERAOP A UNA ÚNICA EMPRESA UBICADA EN EUROPA

COMPROMISO:

 TRAS LA PRESENTACIÓN DEL PRESUPUESTO DE LA SOLUCIÓN FINAL Y SIEMPRE QUE EL PILOTAJE ALCANCE LOS RESULTADOS ACORDADOS, LA EMPRESA SELECCIONADA ESTARÁ CONTRACTUALMENTE OBLIGADA A ADQUIRIR LA SOLUCIÓN PRESUPUESTADA INICIALMENTE

